Speakers
Description
Для проведения экспериментов с газовыми смесями помимо пропорций, составляющих необходимо знать время их полного перемешивания. Для этой цели проведена серия экспериментов по определению скоростей потоков и распределения концентраций в баллоне объёмом 40 л. Исследовались два типовых случая: инжекция водорода в изначально неподвижный воздух и инжекция воздуха в изначально неподвижный водород. Варьировались конечные состав и давление смеси, а также объёмный расход инжектируемого газа. Скорость потока и концентрация смеси контролировались в трёх точках по высоте баллона.
В настоящее время известны следующие типы датчиков концентрации водорода: электрохимические, инфракрасные, акустические и термокондуктометрические. Каждый из них обладает своими достоинствами и недостатками, например, электрохимические обладают высокой чувствительностью, но при этом обладают ограничением в определении концентрации водорода до 20 об.%, что является недостаточным при исследовании смешения водорода [1]. Инфракрасные датчики применимы для обнаружения низших алканов, алкенов и т.д. Применение оптических датчиков ограничено концентрациями водорода до 4 об.%, также они отличаются нестабильностью измерений [2]. Термокондуктометрические датчики обладают достаточно высокой чувствительностью к присутствию в воздухе таких газов как водород, гелий и неон, т.е. газов имеющих высокую теплопроводность [3], при этом они могут использоваться для измерения концентрации водорода во всём диапазоне от 0 до 100 об.%. В работе [4] проводились исследования комбинации датчиков концентрации водорода для обнаружения утечек водорода при транспортировке.
Целью настоящей работы является исследование смешения водорода с воздухом, а также определение скоростей потоков, возникающих в процессе перемешивания. Так как концентрация водорода при создании водородно-воздушной смеси менялась от 10 до 60 об.% использовались сборки, состоящая из двух датчиков IST FS7, один из которых был открытый и расположенный вдоль потока газа, второй – закрытый проницаемым колпачком, расположенный перпендикулярно потоку. В каждом эксперименте снимались показания с трёх сборок, расположенных на разной высоте.
На рис. 1 представлен график зависимости скорости потока газа и концентрации водорода от времени в процессе наполнения ёмкости объёмом 40 литров до абсолютного давления 4 атм. Заполнение ёмкости водородом и воздухом производилось последовательно. Сначала, вакуумированная ёмкость наполнялась водородом до давления 1,6 атм, соответствующему 40 об.% смеси, затем, при помощи расходомера Bronkhorst F201A/V, ёмкость заполнялась воздухом с заданной скоростью 5 л/мин до давления 2,4 атм. На рис. 1 вертикальная линия показывает момент окончания наполнения. В данном эксперименте время остановки потоков составляет 13 минут после окончания наполнения ёмкости. За это же время концентрация водорода достигает стационарного значения.
В результате экспериментов получены времена остановки потоков и смешения водорода с воздухом по всему объёму в зависимости от выбора неподвижного и инжектируемого газов, скорости инжекции, конечных состава и давления водородно-воздушной смеси.
Работа выполнена при поддержке Российского научного фонда, грант №23-29-00267.
- Hübert T., Boon-Brett L., Black G. [et al.] Hydrogen sensors - A review, Sens. Actuators, B. 2014. V. 157(2). P. 329-352. DOI: 10.1016/j.snb.2011.04.070.
- Wang G., Qin Y., Dai J. [et al.] Performance-enhanced optical fiber hydrogen sensors based onWO3-Pd2Pt-Pt composite film with controlled optical heating // Opt. Fiber Technol. 2019. V. 52. P. 101979. DOI: 10.3390/nano11010128.
- Vasiliev A., Shakhnovich I., Samotaev N. [et al.] Intellectual thermoconductometric unit based on aerosol printed ceramic MEMS sensor for the measurement of natural gas composition // Proc. 2018. V. 2. P. 736. DOI: 10.3390/proceedings2130736.
- Hübert T., Losi B., Palmisano V., Bader M. Developments in gas sensor technology for hydrogen safety // Int. J. Hydrogen Energy. V.39. P. 20474–20483. DOI:10.1016/j.ijhydene.2014.05.042.